Semi-supervised learning and graph cuts for consensus based medical image segmentation
نویسنده
چکیده
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator’s performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn’s disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.
منابع مشابه
Combining Multiple Expert Annotations Using Semi-supervised Learning and Graph Cuts for Crohn's Disease Segmentation
We propose a graph cut (GC) based approach for combining annotations from multiple experts and segmenting Crohns disease (CD) tissues in magnetic resonance (MR) images. Random forest (RF) based semi supervised learning (SSL) predicts missing expert labels while a novel self consistency (SC) score quantifies the reliability of each expert label and also serves as the penalty cost in a second ord...
متن کاملDiffusion on a Tensor Product Graph for Semi-Supervised Learning Diffusion on a Tensor Product Graph for Semi-Supervised Learning and Interactive Image Segmentation
We derive a novel semi-supervised learning method that propagates label information as a symmetric, anisotropic diffusion process (SADP). Since the influence of label information is strengthened at each iteration, the process is anisotropic and does not blur the label information. We show that SADP converges to a closed form solution by proving its equivalence to a diffusion process on a tensor...
متن کاملA Feature Space View of Spectral Clustering
The transductive SVM is a semi-supervised learning algorithm that searches for a large margin hyperplane in feature space. By withholding the training labels and adding a constraint that favors balanced clusters, it can be turned into a clustering algorithm. The Normalized Cuts clustering algorithm of Shi and Malik, although originally presented as spectral relaxation of a graph cut problem, ca...
متن کاملGraph Based Microscopic Images Semi and Unsupervised Classification and Segmentation
In this paper, we propose a general formulation of discrete functional regularization on weighted graphs. This framework can be used to on any multi-dimensional data living on graphs of arbitrary topologies. But, in this work, we focus on the microscopic image segmentation and classification with a semi and unsupervised schemes. Moreover, to provide a fast image segmentation we propose a graph ...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 63 شماره
صفحات -
تاریخ انتشار 2017